Search results for "Complex dimension"
showing 4 items of 4 documents
Skeleta of affine hypersurfaces
2014
A smooth affine hypersurface Z of complex dimension n is homotopy equivalent to an n-dimensional cell complex. Given a defining polynomial f for Z as well as a regular triangulation of its Newton polytope, we provide a purely combinatorial construction of a compact topological space S as a union of components of real dimension n, and prove that S embeds into Z as a deformation retract. In particular, Z is homotopy equivalent to S.
Local dimensions of measures on infinitely generated self-affine sets
2014
We show the existence of the local dimension of an invariant probability measure on an infinitely generated self-affine set, for almost all translations. This implies that an ergodic probability measure is exactly dimensional. Furthermore the local dimension equals the minimum of the local Lyapunov dimension and the dimension of the space. We also give an estimate, that holds for all translation vectors, with only assuming the affine maps to be contractive.
Comparison theorems for the volume of a complex submanifold of a Kaehler manifold
1990
LetM be a Kaehler manifold of real dimension 2n with holomorphic sectional curvatureK H≥4λ and antiholomorphic Ricci curvatureρ A≥(2n−2)λ, andP is a complex hypersurface. We give a bound for the quotient (volume ofP)/(volume ofM) and prove that this bound is attained if and only ifP=C P n−1(λ) andM=C P n(λ). Moreover, we give some results on the volume of of tubes aboutP inM.
Approximation of functions over manifolds : A Moving Least-Squares approach
2021
We present an algorithm for approximating a function defined over a $d$-dimensional manifold utilizing only noisy function values at locations sampled from the manifold with noise. To produce the approximation we do not require any knowledge regarding the manifold other than its dimension $d$. We use the Manifold Moving Least-Squares approach of (Sober and Levin 2016) to reconstruct the atlas of charts and the approximation is built on-top of those charts. The resulting approximant is shown to be a function defined over a neighborhood of a manifold, approximating the originally sampled manifold. In other words, given a new point, located near the manifold, the approximation can be evaluated…